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Abstract. The connection between the quantum-vacuum geometric phases (which originates from the vac-
uum zero-point electromagnetic fluctuation) and the non-normal order for operator product is considered in
the present paper. In order to investigate this physically interesting geometric phases at quantum-vacuum
level, we suggest an experimentally feasible scheme to test it by means of a noncoplanarly curved fiber made
of gyrotropic media. A remarkable feature of the present experimental realization is that one can easily
extract the nonvanishing and nontrivial quantum-vacuum geometric phases of left- and/or right-handed
circularly polarized light from the vanishing and trivial total quantum-vacuum geometric phases. Since the
normal-order procedure may remove globally the vacuum energy of time-dependent quantum systems, the
potential physical vacuum effects (e.g., quantum-vacuum geometric phases) may also be removed by this
procedure. Thus the detection of the geometric phases at quantum-vacuum level may answer whether the
normal-order technique is valid or not in the time-dependent quantum field theory.

PACS. 03.65.Vf Phases: geometric; dynamic or topological – 03.70.+k Theory of quantized fields – 42.70.-a
Optical materials – 42.50.Xa Optical tests of quantum theory

1 Introduction

Since Berry discovered that a topological (geometric)
phase exists in quantum mechanical wavefunction of time-
dependent systems, geometric phase problems have cap-
tured considerable attention of researchers in various
fields, including quantum mechanics [1], differential ge-
ometry [2], gravity theory [3], atomic and molecular
physics [4,5], nuclear physics [6], quantum optics [7], con-
densed matter physics [8], molecular systems and chem-
ical reaction [4] as well. Differing from dynamical phase
that depends on dynamical quantities (such as energy,
frequency, velocity and coupling coefficients as well) of
systems, geometric phase is independent of these dynam-
ical quantities. Instead, it is only related to the geomet-
ric nature of the pathway along which the quantum sys-
tems evolve. It has been well-known that geometric phase
arises in systems with the time-dependent Hamiltonian,
or in systems the Hamiltonian of which possesses some
evolution parameters. This, therefore, implies that geo-
metric phase presents the topological and global proper-
ties of quantum systems in time-development process, and
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that it possesses the physical significance and can thus be
employed to various fields of physics [4–8]. More recently,
many authors concentrated their particular attention on
the potential applications of geometric phases to the geo-
metric quantum computation, quantum decoherence and
related topics [9–12]. One of the most important physical
realizations of Berry’s phase (i.e., cyclic adiabatic geo-
metric phase) is the model describing the propagation of
photons inside a helically curved optical fiber, which was
proposed by Chiao and Wu [13], and later performed ex-
perimentally by Tomita and Chiao [14]. Afterwards, a
large number of investigators treated this photon geo-
metric phases by making use of the classical Maxwell’s
electrodynamics, differential geometry method (parallel
transport) and quantum adiabatic theory both theoret-
ically and experimentally [15–18]. Based on the above
investigations, we studied the nonadiabatic noncyclic ge-
ometric phases of photons propagating inside a non-
coplanarly curved optical fiber [19,20] by means of the
Lewis-Riesenfeld invariant theory [21] and the invariant-
related unitary transformation formulation [22]. By us-
ing the obtained results [19,20], we considered the pho-
ton helicity inversion in the curved fiber and its potential
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applications to information science [23] and proposed a
second-quantized spin model to describe the coiled light
in a curved fiber, where the vacuum zero-point fluctua-
tion is involved. As was stated by Fuentes-Guridi et al.,
in a strict sense, the Berry phase has been studied only
in a semiclassical context until now [24]. Thus the effects
of the vacuum field on the geometric evolution are still
unknown [24]. In their paper [24], Fuentes-Guridi et al.
considered the time evolution of a spin-1/2 particle in-
teracting with a second-quantized external magnetic field
and proposed a vacuum-induced spin-1/2 Berry’s phase,
which they regarded as the effect of vacuum photon fluc-
tuation. It should be noted that the contribution of such a
quantum electromagnetic fluctuation to geometric phases
was also suggested independently by us in the papers [23,
25], where we briefly considered the effect of quantum vac-
uum fluctuation on the photon wavefunction propagating
inside a noncoplanarly curved fiber [23] and showed that
the photon wavefunction will acquire a so-called quantum-
vacuum geometric phase. The essential difference between
Fuentes-Guridi et al.’s vacuum-induced Berry’s phase [24]
and our quantum-vacuum geometric phase [23,25] lies in
that the former phase belongs to the spin-1/2 charged
particle experiencing an interaction with a quantized ex-
ternal magnetic field, while the latter phase belongs to the
photon field itself which undergoes an “inertial force” in
a curved fiber [23]. This means that in Fuentes-Guridi
et al.’s work the spin-1/2 particle is actually the pro-
tagonist [24], whereas in our work the protagonist under
consideration is just the second-quantized electromagnetic
field itself [23,25]. In other words, the quantum-vacuum
geometric phase of photons considered by us is a purely
optical effect at the vacuum level. In this paper, we will
study further this nontrivial vacuum effect, and consider
its novel properties (particularly its connection with the
normal-order procedure in quantum field theory), and
then suggest a scheme of experimental realization of this
geometric phases at quantum-vacuum level by using the
gyrotropic-medium fiber.

This paper is organized as follows: in Section 2, we
discuss the necessity of non-normal product in the time-
dependent quantum field theory; in Section 3, we give the
expressions for the quantum-vacuum geometric phases of
left- and right-handed circularly polarized light, and then
show why the total vacuum geometric phases of polarized
light is generally absent in experiments [14–18]. In Sec-
tion 4, we propose a scheme to detect the nonvanishing
vacuum geometric phases of one (left- or right-handed)
of polarized light. In Section 5, we consider the potential
physical significance of quantum-vacuum geometric phases
in quantum mechanics and time-dependent quantum field
theory.

2 Non-normal order and observable vacuum
effects

Note that here the quantum-vacuum geometric phases
of photons results from the zero-point energy of vacuum

quantum fluctuation. This, therefore, means that this ge-
ometric phases is quantal in character and, moreover, has
no classical counterpart, namely, it cannot survive the
correspondence-principle limit into the classical level. It is
well-known that in the conventional quantum field theory,
both infinite vacuum fluctuation energy and divergent vac-
uum electric charge density are removed by the so-called
normal-order procedure and the new vacuum backgrounds
of quantum fields in which the vacuum expectation values
of both charge density and Hamiltonian vanish, are there-
fore re-defined. Since in the time-independent field theory,
the infinite constant is harmless and easily removed, the
normal-order procedure applied to these time-independent
cases is reliable and valid indeed. However, in the time-
dependent quantum field theory (such as quantum field
theory in curved space-time, e.g., time-dependent gravi-
tational backgrounds and expanding universe), the time-
dependent vacuum zero-point fields itself may also partic-
ipate in the time evolution process and therefore cannot
be regarded merely as an inactive onlooker. In order to
clarify this point, we will discuss the above problem in
more details.

In the time-independent quantum field theory, the vac-
uum fluctuation energy has been removed by the normal-
order procedure. Such a technique is harmless since we
remove the same amount of background energy at differ-
ent time (i.e., the vacuum background energy is removed
globally). However, in the time-dependent field theory, if
we use the normal-order procedure, we will remove the
different amount of background energy at different time
in the evolution process (i.e., the vacuum background en-
ergy is removed based on the different cardinal numbers
at different time). Thus the vacuum background is so re-
defined by removing different amount of zero-point en-
ergies in the time-development process, and then some
observable vacuum effects may also be cancelled theoret-
ically by this normal-order procedure. Since in the time-
dependent quantum systems, one of the most attractive
and important effects is the geometric phases, we should
consider the connection between the non-normal order and
the geometric phases at quantum-vacuum level.

In the above, we have shown that the quantum-vacuum
geometric phases may be removed by the normal-order
procedure. However, geometric phases is a physically in-
teresting effect. This, therefore, means that the normal-
order procedure will inevitably remove the physical ef-
fects. Such a situation is not quite satisfactory. However,
the detection of the existence of vacuum geometric phases
may answer whether the normal-order technique is valid
or not in the time-dependent quantum field theory. If we
cannot test the vacuum geometric phases experimentally,
then we can conclude that the normal-order technique is
still valid in the time-dependent quantum field theory. But
if experimental evidences show that there truly exists the
quantum-vacuum geometric phases, then we may argue
that the normal-order technique might be no longer valid
in the time-dependent quantum field theory. In this sense,
the quantum-vacuum geometric phases may be regarded
as just a touchstone for the normal-order procedure.
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For this aim, in the time-dependent cases, we should
first take into account the non-normal order for operator
product in quantum field theory and subsequently pre-
dict some physically interesting vacuum effects associated
with time-dependent quantum fluctuation. In what follows
by analyzing the time evolution of photon wavefunction
we will consider such vacuum effects in a time-dependent
quantum system, i.e., the Tomita-Chiao-Wu fiber sys-
tem [13,14,19] where the rotation of photon polarization
planes, which gives rise to photon geometric phases, in a
noncoplanar fiber takes place.

3 Quantum-vacuum geometric phases
in noncoplanarly curved fibers

In this section, we will demonstrate theoretically how
the quantum-vacuum geometric phase of photons arises
in the Tomita-Chiao-Wu fiber system [13,14] when the
normal order procedure is not applied to the derivation
of the geometric phases and wavefunctions of photons
moving in a noncoplanar optical fiber. According to the
Liouville-von Neumann equation [19], where the Lewis-
Riesenfeld invariant [21] is the photon helicity h = k ·S/k,
the effective Hamiltonian that describes the propagation
of coiled light in a curved fiber is of the form [19,20]
Heff(t) = [k(t)× k̇(t)] ·S/k2 with k, k and S representing
the wave vector, the magnitude of k and the spin operator
of photons. The dot denotes the derivative of k with re-
spect to time. Thus the time-dependent Schrödinger equa-
tion governing the time evolution of photon wavefunction
inside the noncoplanarly curved fiber is written in the
form [19,20] (in the unit � = c = 1)

i
∂ |σ,k(t)〉

∂t
=

k(t) × k̇(t)
k2

· S |σ,k(t)〉 , (3.1)

where σ = ±1 is the eigenvalues of photon helicity h corre-
sponding to the right- and left-handed circularly polarized
photons. The photon wave vector k inside the fiber can
be written in the spherical polar coordinate system, i.e.,
k = k(sin θ cosϕ, sin θ sin ϕ, cos θ), which is always along
the tangent to the curved fiber at each point at arbitrary
time. By making use of the Lewis-Riesenfeld invariant the-
ory and the invariant-related unitary transformation for-
mulation [21,22], we obtain the exact particular solutions
|σ,k(t)〉 = exp[(1/i)φ(g)

σ (t)]V (t)|σ, k〉 to equation (3.1),
where |σ, k〉 ≡ |σ,k(t = 0)〉 is the initial polarized pho-
ton state, V (t) = exp[β(t)S+ − β∗(t)S−] with β(t) =
−[θ(t)/2] exp[−iϕ(t)], β∗(t) = −[θ(t)/2] exp[iϕ(t)] [19]
and S± = S1 ± iS2. In this paper, we consider only the
case where the polar angle θ is constant (i.e., the nuta-
tional frequency of photon wave vector k vanishes) and
the azimuthal angle ϕ changes just with time (i.e., the
precessional frequency ϕ̇ is constant, ω). Thus the non-
cyclic geometric phase is given as follows

φ(g)
σ (t) = Ω(t) 〈σ, k|S3 |σ, k〉 (3.2)

with Ω(t) = arctan(tan ωt cos θ) − ωt cos θ [26,27]. It is
apparent that in the cyclic case for the Chiao-Wu’s coiled

light in a helically curved fiber, where θ̇ = 0 and the ro-
tating frequency of photon moving on the fiber helicoid
is ω, the geometric phase in a cycle (T = 2π/ω) over the
photon momentum space takes the form φ

(g)
σ (T ) = 2π(1−

cos θ) 〈σ, k|S3 |σ, k〉, where the expression 2π(1−cos θ) de-
notes the solid angle subtended by a curve traced by the
wave vector at the center of photon momentum space.
This fact demonstrates the topological and global proper-
ties of geometric phases. This shows that the above calcu-
lation is self-consistent.

Now we consider the expectation value, 〈σ, k|S3 |σ, k〉,
of the third component of photon spin operator in equa-
tion (3.2). Substitution of the Fourier expansion series of
three-dimensional magnetic vector potentials A(x, t) into
the expression Sij = − ∫

(ȦiAj − ȦjAi)d3x for the spin
operator of photon fields yields

S3 =
i

2
[a(k, 1)a†(k, 2) − a†(k, 1)a(k, 2)

− a(k, 2)a†(k, 1) + a†(k, 2)a(k, 1)] (3.3)

with a†(k, λ) and a(k, λ) (λ = 1, 2) being the creation and
annihilation operators of polarized photons corresponding
to the two mutually perpendicular real unit polarization
vectors. Note that here S3 is of the non-normal-order form.

In what follows we define the creation and annihi-
lation operators, a†

R(k), a†
L(k), aR(k), aL(k), of right-

and left-handed circularly polarized light [28], which
are expressed in terms of a†(k, λ) and a(k, λ), i.e.,
a†

R(k) = 1/
√

2[a†(k, 1)+ia†(k, 2)], aR(k) = 1/
√

2[a(k, 1)−
ia(k, 2)], a†

L(k) = 1/
√

2[a†(k, 1) − ia†(k, 2)] and aL(k) =
1/

√
2[a(k, 1)+ia(k, 2)]. Thus equation (3.3) can be rewrit-

ten in terms of the creation and annihilation operators of
right- and left-handed polarized photons, namely,

S3 =
1
2
[aR(k)a†

R(k) + a†
R(k)aR(k)]

− 1
2
[aL(k)a†

L(k) + a†
L(k)aL(k)], (3.4)

which can also be rewritten as S3 = [a†
R(k)aR(k)+ 1/2]−

[a†
L(k)aL(k) + 1/2].

The monomode multiphoton states of left- and right-
handed (LRH) circularly polarized light (at t = 0) can
be defined as |σ = −1, k, nL〉 = (nL!)−1/2[a†

L(k)]nL |0L〉
and |σ = +1, k, nR〉 = (nR!)−1/2[a†

R(k)]nR |0R〉 with
nL and nR being the LRH polarized photon occupa-
tion numbers, respectively. In the following we will cal-
culate the total geometric phases of monomode multi-
photon states |σ = +1, k, nR; σ = −1, k, nL〉, which is
the direct product of LRH polarized multiphoton states,
i.e., |σ = +1, k, nR〉 ⊗ |σ = −1, k, nL〉. Insertion of the
expression for the monomode multiphoton states into
equation (3.2) yields the geometric phases of multiphoton
polarized states, φ(g)(t) = (nR − nL)Ω(t), which is inde-
pendent of k but dependent on the geometric nature of the
pathway (expressed in terms of θ and ϕ) along which the
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light wave propagates. Although the phases φ(g)(t) asso-
ciated with the photonic occupation numbers nR and nL

are quantal geometric phases of photons [20], they do not
belong to the geometric phases at quantum-vacuum level
which arises, however, from the zero-point electromagnetic
energy of vacuum quantum fluctuation.

It follows from expression (3.4) for S3 that the sepa-
rate geometric phases (different from the above total ge-
ometric phases φ(g)(t)) of left- and right-handed circu-
larly polarized photon states, i.e., |σ = −1, k, nL〉 and
|σ = +1, k, nR〉, are respectively as follows

φ
(g)
L (t) = −

(
nL +

1
2

)
Ω(t),

φ
(g)
R (t) = +

(
nR +

1
2

)
Ω(t). (3.5)

Note again that in Tomita-Chiao experiment [14], Ω(t)
in (3.5) is the solid angle, Ω(T )=2π(1 − cos θ), traced by
the photon wave vector at the center.

It follows from equation (3.5) that the total geometric
phases of circularly polarized light is

φ
(g)
total(t) =

[(
nR +

1
2

)
−

(
nL +

1
2

)]
Ω(t), (3.6)

which can be rewritten as

φ
(g)
total(t) = (nR − nL)Ω(t). (3.7)

It should be noted that even though the expression (3.6)
is mathematically equivalent to (3.7), there are essential
differences in physical meanings between them. Namely,
the expression (3.6) contains the geometric phases at
quantum-vacuum level, while the expression (3.7) does not
involve such a vacuum effect. In the papers [19,20], the au-
thors studied the photon geometric phases (3.7) in a fiber
system. In the present paper, we concentrate our attention
more on the geometric phases (3.6) and its experimental
realization.

According to equation (3.5), it is readily verified that
the time-dependent zero-point energy possesses physical
meanings and therefore contributes to geometric phases
of photon fields. Thus the noncyclic nonadiabatic geomet-
ric phases of left- and right-handed polarized states at
quantum-vacuum level are of the form

φ
(vac)
σ=±1(t) = ±1

2
Ω(t). (3.8)

However, it should be pointed out that, unfortunately,
even at the quantum level, this quantum-vacuum geomet-
ric phases φ

(vac)
σ=±1(t) that is observable in principle is absent

in the previous fiber experiments [14–17], since it follows
from (3.5) and (3.8) that the signs of quantal geometric
phases of left- and right-handed circularly polarized pho-
tons are just opposite to one another, and so that their
quantum-vacuum geometric phases (3.8) are counteracted
by each other. Hence the observed geometric phases are
only those associated with the creation operators a†

L and

a†
R of LRH polarized photons, the cyclic adiabatic case of

which has been measured in the optical fiber experiments
performed by Tomita and Chiao et al. [14–17]. Although
the total of LRH quantum-vacuum geometric phases (3.8)
is trivial, the separate vacuum geometric phase of circu-
larly polarized field is nontrivial, which deserves experi-
mental investigation. The troublesome problem left to us
now is that how can we detect the above quantum-vacuum
geometric phases of left- and/or right-handed polarized
fields that has been cancelled by each other?

4 A realization of quantum-vacuum
geometric phases

More recently, we suggest a new scheme to test the ex-
istence of this vacuum effect, the idea of which is to ex-
tract the nonvanishing cyclic quantum-vacuum geometric
phases φ

(vac)
σ=+1(T ) or φ

(vac)
σ=−1(T ) by changing the mode dis-

tribution structures of vacuum photon field (or inhibiting
the vacuum photon fluctuation of certain propagation con-
stant). This is not strange to us. For example, it is well-
known that in Casimir’s effect the vacuum-fluctuation
electromagnetic field in a finitely large space (i.e., the
space between two parallel metallic planes) will alter its
mode structures, namely, the zero-point field with wave
vector k less than ∼ (π/a) does not exist in this surround-
ing space with a finite scale length a. Another illustrative
example is the inhibition or enhancement of spontaneous
emission in photonic crystals [29] and resonant cavity [30],
where the vacuum modes at certain transition frequencies
is drastically modified as compared to that in free space.

For this aim, we take into account the peculiar wave
propagation inside a kind of anisotropic materials (gy-
rotropic media), the electric permittivity and magnetic
permeability of which are tensors taking the following
form [31]

ε̂ =


 ε1 iε2 0

−iε2 ε1 0
0 0 ε3


 , µ̂ =


 µ1 iµ2 0

−iµ2 µ1 0
0 0 µ3


 . (4.1)

Assuming that the direction of the electromagnetic wave
vector k is parallel to the third component of the Cartesian
coordinate system, with the help of Maxwell’s equations,
one can arrive at [31,32]

n2
± = (ε1 ± ε2)(µ1 ± µ2), (4.2)

where n+ and n− are the optical refractive indices of
such gyrotropic media corresponding to the right- and
left-handed circularly polarized light, respectively [31,32].
Since in such gyrotropic media, if one is positive and the
other negative for the optical refractive indices squared n2

corresponding to the two directions of polarization of the
electromagnetic wave, then only one wave can propagate
in this gyrotropic media.
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We think that there may be two ways of changing the
density in the distribution of modes of vacuum fluctua-
tion fields: one is the change of boundary conditions (e.g.,
Casimir effect), the other is the choice of appropriate opti-
cal constants (electric permittivity, magnetic permeability
and refractive index) of media. It is truly understandable
that on the classical level the electromagnetic wave can be
inhibited by the dissipative media. We believe that, like-
wise, the electromagnetic media may also have influence
on the mode density of vacuum quantum fluctuation. In
order to clarify this point, here we discuss two illustrative
examples:

(i) photonic crystals are one of the artificial materials
patterned with a periodicity in dielectric constant,
which can create a range of forbidden frequencies
called the photonic band gap (PBG). It is well-known
that in the photonic crystals the rates of spontaneous
emission of atoms will be influenced greatly by the
PBG structures. Recently, Klimov investigated theo-
retically the modified spontaneous emission rates in
the left-handed media, which possess the permittiv-
ity and permeability with negative real parts (and
hence the negative real part of the optical refrac-
tive index) [33]. Since the spontaneous emission of
atoms results from the interaction between the ex-
cited atoms and the vacuum zero-point electromag-
netic field, these investigations show that the unusual
properties of optical constants (including the spatial
variation, complex function, and the corresponding
band gap structures) may lead to some changes of
the density in the distribution of modes of vacuum
fluctuation fields;

(ii) more recently, Dung et al. studied in detail the prob-
lems of the electromagnetic-field quantization and
the spontaneous emission in left-handed media. Their
work shows that the spontaneous decay rate of an ex-
cited atom will be influenced by the dispersing and ab-
sorbing magnetodielectric media having complex op-
tical “constants” with the negative real parts [34].

In view of the above work of spontaneous emission
and field quantization in artificial electromagnetic me-
dia [33,34], it is believed that the unusual changes of op-
tical constants of media will inevitably have effects on the
density in the distribution of modes of both the classi-
cal fields and the vacuum fluctuation fields inside these
media. So, the vacuum contribution of one of the two po-
larizations may possibly be reduced by the gyrotropic me-
dia with appropriate electromagnetic parameters ε1,2 and
µ1,2 in the permittivity and permeability tensors (4.1).
Thus, the quantum-vacuum geometric phases of LRH po-
larized photons cannot be eliminated by each other and
it is therefore possible for physicists to easily test the re-
mainder of them experimentally. If, for example, by tak-
ing some certain values of ε1, ε2, µ1 and µ2, then n2− < 0
while n2

+ > 0 and consequently the left-handed polarized
light cannot be propagated in this medium, and in the
meanwhile the quantum vacuum fluctuation correspond-
ing to the left-handed polarized light will also be inhib-
ited (e.g., the wave amplitude exponentially decreases be-

cause of the imaginary part of the refractive index n−)
in this anisotropic absorptive medium. Thus the vacuum-
fluctuation electromagnetic field alters its mode structures
in such an absorptive medium. For this reason, the only
retained geometric phase is that of right-handed polarized
light, which we can detect experimentally.

As an illustrative example, we now discuss the light
propagation inside an optical fiber made of gyrotropic me-
dia. We only consider the condition under which |ε2| >
|ε1| = −ε1 and µ1 ± µ2 > 0. If, for instance, ε2 is positive,
then the right-handed polarized light can be propagated
while the left-handed polarized light cannot be propagated
in the fiber (because of the negative n2

− and the conse-
quent imaginary propagation constant k−, which is ex-
pressed by n−ω/c); conversely, if ε2 is negative, then the
left-handed polarized light can be propagated while the
right-handed polarized light is inhibited from being prop-
agated (due to the imaginary propagation constant k+,
which equals n+ω/c). Thus in the former case the phase
φ

(vac)
R (T ) of right-handed polarized light, and in the lat-

ter case the phase φ
(vac)
L (T ) of left-handed polarized light

instead, may respectively be detected in this gyrotropic-
medium fiber experiment.

Since the vacuum photon fluctuation with k less than
π/a will be inhibited in the space between two parallel
conducting plates whose separation is a, we can suggest
another scheme to detect φ

(vac)
σ=±1(T ): specifically, if ε1 and

ε2 (or µ1 and µ2) of gyrotropic medium are chosen to be
ε1 = ε2 (or µ1 = µ2), then the vacuum fluctuation cor-
responding to the left-handed polarized light is inhibited
since its propagation constant k− tends to zero (and hence
the wavelength is much larger than the space scale a).
Thus the only retained vacuum geometric phase is that of
right-handed polarized light.

5 Physical significance of quantum-vacuum
geometric phases

Historically, field theory encountered problems such as di-
vergent zero-point energies of quantized electromagnetic
fields and infinite electric charge density arising from the
presence of electrons of negative energies [28]. These prob-
lems can be solved by applying the normal-order technique
to the field operators. Thus both the background charges
and vacuum fluctuation energies are removed (i.e., the vac-
uum expectation values of both charge density and Hamil-
tonian vanish). In such systems of field theory, the Hamil-
tonian of which is time-independent, the same amount of
zero-point energy is eliminated in the evolution process,
which is equivalent to re-defining the background ener-
gies with the same base number at different time. Hence,
in these cases the normal-order procedure is practical and
valid. However, whether the normal product is valid or not
should still be taken into consideration for systems with
time-dependent Hamiltonians. Moreover, we think that in
the time-dependent field theory the validity of the above
formulation may deserve much incredulity. In view of the
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above remarks, it is emphasized that investigations of vac-
uum states of time-dependent systems may become partic-
ularly important. So, we think that the test of the above-
mentioned quantum-vacuum geometric phases in the fiber
system may be of imperative necessity.

The physical significance of the subject presented in
this paper may be as follows:

(i) the quantum-vacuum geometric phases found here
possesses interesting properties, for it has an im-
portant connection with the topological nature of
time evolution of quantum vacuum fluctuation. To
the best of our knowledge, in the literature, less
attention was paid to such geometric phases at
purely quantum-vacuum level. According to Fuentes-
Guridi’s statement, such vacuum geometric phases
may open up a new areas to the study of the
consequences of field quantization in the geometric
evolution of states [24], so, it is emphasized that this
vacuum effect deserves further consideration both
theoretically and experimentally;

(ii) in order to extract the nontrivial quantum-vacuum
geometric phases of polarized light from the triv-
ial total quantum-vacuum geometric phases (which
has been cancelled by each other and therefore van-
ishing), a new scheme, which is somewhat inge-
nious, by using the gyrotropic-medium optical fiber
is proposed;

(iii) we think that the detection of quantum-vacuum geo-
metric phases may be essential for the investigation of
the time-dependent quantum field theory. As was dis-
cussed above, the quantum-vacuum geometric phases
is related close to the non-normal order for operator
product in second quantization. If the existence of
quantum-vacuum geometric phases is truly demon-
strated in experiments, then we should consider the
validity problem of normal product technique in the
time-dependent field theory. This, therefore, means
that the experimental study of quantum-vacuum ge-
ometric phases might become a fundamental and
important subject in quantization formulation and
time-dependent field theory.

Recently, many authors applied geometric phases to some
areas such as quantum decoherence and geometric (topo-
logical) quantum computation [9–12]. It may be believed
that the quantum-vacuum geometric phases in the fiber
will probably also have some possible interesting applica-
tions to these subjects. We hope all the effects and phe-
nomena presented in this paper would be investigated ex-
perimentally in the near future.

I thank X.C. Gao for his beneficial proposals. This project was
supported in part by the National Natural Science Foundation
of China under Project No. 90101024.

References

1. M.V. Berry, Proc. Roy. Soc. Lond. A 392, 45 (1984)
2. B. Simon, Phys. Rev. Lett. 51, 2167 (1983)
3. C. Furtado, V.B. Bezerra, Phys. Rev. D 62, 045003 (2000)
4. Y.S. Wu, A. Kuppermann, Chem. Phys. Lett. 201, 178

(1993); Y.S. Wu, A. Kuppermann, Chem. Phys. Lett. 186,
319 (1991)

5. B.G. Levi, Phys. Today (March), 17 (1993)
6. A.G. Wagh et al., Phys. Lett. A 268, 209 (2000)
7. L.F. Gong, Q. Li, Y.L. Chen, Phys. Lett. A 251, 387

(1999); J.Q. Shen, H.Y. Zhu, P. Chen, Eur. Phys. J. D
23, 305 (2003)

8. G. Falci et al., Nature 407, 355 (2000); J.Q. Shen, S.L.
He, Phys. Rev. B 68, 195421 (2003)

9. J.Q. Shen, S.S. Xiao, Q. Wu, Chin. Opt. Lett. 1, 183 (2003)
10. J.A. Jones, Nature 403, 869 (2000)
11. X.B. Wang, M. Keiji, Phys. Rev. Lett. 87, 097901 (2001)
12. S.L. Zhu, Z.D. Wang, Phys. Rev. Lett. 89, 097902 (2002)
13. R.Y. Chiao, Y.S. Wu, Phys. Rev. Lett. 57, 933 (1986)
14. A. Tomita, R.Y. Chiao, Phys. Rev. Lett. 57, 937 (1986)
15. P.G. Kwiat, R.Y. Chiao, Phys. Rev. Lett. 66, 588 (1991)
16. A.L. Robinson, Science 234, 424 (1986)
17. F.D.M. Haldane, Opt. Lett. 11, 730 (1986)
18. F.D.M. Haldane, Phys. Rev. Lett. 15, 1788 (1987)
19. J.Q. Shen, H.Y. Zhu, Ann. Phys. (Leipzig) 12, 131 (2003)
20. X.C. Gao, Chin. Phys. Lett. 19, 613 (2002)
21. H.R. Lewis, W.B. Riesenfeld, J. Math. Phys. 10, 1458

(1969)
22. X.C. Gao, J.B. Xu, T.Z. Qian, Phys. Rev. A 44, 7016

(1991)
23. J.Q. Shen, L.H. Ma, Phys. Lett. A 308, 355 (2003)
24. I. Fuentes-Guridi, A. Carollo, S. Bose, V. Vedral, Phys.

Rev. Lett. 89, 220404 (2002)
25. J.Q. Shen, e-print arXiv:quant-ph/0304172 (2003)
26. A.K. Pati, Phys. Rev. A 52, 2576 (1995)
27. N. Mukunda, R. Simon, Ann. Phys. 228, 205 (1993)
28. J.D. Bjorken, S.D. Drell, Relativistic Quantum Fields (Mc

Graw-Hill Company, New York, 1965), Chap. 14
29. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)
30. W. Jhe, A. Anderson, E.A. Hinds, D. Meshede, L. Moi, S.

Haroche, Phys. Rev. Lett. 58, 666 (1987)
31. V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968)
32. J.Q. Shen, Ann. Phys. (Leipzig) 13, 335 (2004)
33. V.V. Klimov, Opt. Comm. 211, 183 (2002)
34. H.T. Dung, S.Y. Buhmann, L. Knöll, D.-G. Welsch, Phys.
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